Local discrete velocity grids for deterministic rarefied flow simulations

نویسندگان

  • Stéphane Brull
  • Luc Mieussens
چکیده

Most of numerical methods for deterministic simulations of rarefied gas flows use the discrete velocity (or discrete ordinate) approximation. In this approach, the kinetic equation is approximated with a global velocity grid. The grid must be large and fine enough to capture all the distribution functions, which is very expensive for high speed flows (like in hypersonic aerodynamics). In this article, we propose to use instead different velocity grids that are local in time and space: these grids dynamically adapt to the width of the distribution functions. The advantages and drawbacks of the method are illustrated in several 1D test cases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two Dimensional Local Adaptive Discrete Velocity Grids For Rarefied Flow Simulations

We propose a deterministic method designed for unsteady flows, based on a discretization of the Boltzmann (BGK) equation with local adaptive velocity grids. These grids dynamically adapt in time and space to the variations of the width of the distribution functions. This allows a significant reduction of the memory storage and CPU time, as compared to standard discrete velocity methods, and avo...

متن کامل

Locally refined discrete velocity grids for stationary rarefied flow simulations

Most of deterministic solvers for rarefied gas dynamics use discrete velocity (or discrete ordinate) approximations of the distribution function on a Cartesian grid. This grid must be sufficiently large and fine to describe the distribution functions at every space position in the computational domain. For 3-dimensional hypersonic flows, like in re-entry problems, this induces much too dense ve...

متن کامل

A fast iterative model for discrete velocity calculations on triangular grids

A fast synthetic type iterative model is proposed to speed up the slow convergence of discrete velocity algorithms for solving linear kinetic equations on triangular lattices. The efficiency of the scheme is verified both theoretically by a discrete Fourier stability analysis and computationally by solving a rarefied gas flow problem. The stability analysis of the discrete kinetic equations yie...

متن کامل

Numerical Error Analysis for Deterministic Kinetic Solutions of Low-Speed Flows

The computational cost of the direct simulation Monte Carlo solutions of rarefied flows increases with decreasing average flow velocity due to larger noise-to-signal ratio and a longer time to reach the steady state. For such low-speed flows, the discrete-ordinate solution of kinetic model equations can provide accurate and computationally efficient numerical modeling. In this work, analysis of...

متن کامل

Towards adaptive kinetic-fluid simulations of weakly ionized plasmas

This paper describes an Adaptive Mesh and Algorithm Refinement (AMAR) methodology for multi-scale simulations of gas flows and the challenges associated with extending this methodology for simulations of weakly ionized plasmas. The AMAR method combines Adaptive Mesh Refinement (AMR) with automatic selection of kinetic or continuum solvers in different parts of computational domains. We first re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 266  شماره 

صفحات  -

تاریخ انتشار 2014